TIME SCHEDULE

2008/2009

Environmental impact assessments are carried out. The project is given its final name and corporate design.

Everything is ready for the move-in of the first pioneer companies and research facilities. In this context, green space design can likewise be initiated at an early date. Further development steps go hand in hand with the establishment and upgrading of the high-level traffic and transport infrastructure.

2010

The Underground line U2 is extended to the Aspernstrasse station.

The central park with its lake is laid out; an area management office takes up operation; the first flats, kindergartens, elementary and secondary schools are built. A local centre with shops and social meeting points is developed. The first cultural and educational facilities move in.

2013

The U2 line operates two stations on the former airfield. The northern station offers interchange options with the suburban train line (S-Bahn) and the trains of the Austrian Federal Railways (ÖBB).

The southern section of the Aspern Airfield development area and the science campus are thus smoothly hooked up to the public transport network. Work to develop the green space system continues.

2016

The A23 motorway is completed and linked to the Hirschstetten junction. Additional flats are ready for tenants; the office and service sector is beginning to take root.

2018

The regional ring around Vienna is completed. The central zones are evolving; service facilities and urban mixed-use zones endow the former airfield with vibrant city life.

The present brochure is an overview summary of the Aspern Airfield master plan. The unridged master plan is available online (in German) at the website of Vienna’s Municipal Department of Urban Development and Planning: www.wien.gv.at/umwelt/wien/stadtentwicklung/Flughafenspern.
The visionary development of the city quarter Aspern in Vienna’s 22nd municipal district Donaustadt is emblematic of the future-oriented positioning of Vienna. Over the next 20 years, a forward-looking city of the 21st century will emerge on the biggest area earmarked for urban development across Vienna’s entire municipal territory.

Dr. Michael Häupl
Mayor of the City of Vienna

Urbanity and high quality of life - these will be the hallmarks of the new, multifunctional city quarter, which is to offer attractive housing options, jobs, a modern range of shopping and service facilities as well as an innovative science and education campus of supra-regional importance. Spacious green zones, an attractive environment for commerce and industry, social, leisure, recreational and cultural facilities, efficient connections to the traffic and public transport systems (Underground, road network) and vicinity to major recreational areas “just around the corner” are key characteristics of this location.
ROLE OF THE NEW CITY QUARTER FOR VIENNA AND ITS REGION

Because of its size of approx. 240 hectares, Aspern Airfield – formerly an airport, later an extension area for a factory manufacturing engines and gearboxes – harbours enormous potential for development:

The enlargement of the European Union has pushed Vienna from the geopolitical periphery into a central position with historically evolved good-neighbourly relations and huge economic growth potential. The CENTROPE logo has become a symbol epitomising the political intention to further the partnership-based development of a region extending over several EU Member States.

In this context, too, Aspern Airfield has become an important strategic area for Vienna’s urban development, which is reflected in the focuses defined by the Vienna Urban Development Plan 2005 (STEP 05), which identifies the target area U2 Donaustadt/Aspern Airfield as one of 13 hot spots of urban development. With a view to the future significance of the eastern region, the former airfield fulfils two key roles as a development location:

- The creation of an urban focus along the train line to Bratislava is to exploit the opportunity of fostering a regional partnership with high economic potential and a wealth of win-win options along the Vienna-Bratislava axis.
- The development of an attractive urban centre characterised by short distances between all of its vital functions, vibrant interaction with its environs and clear prioritisation of public transport is to markedly improve the provision of services and facilities in the north-eastern part of Vienna and will trigger an impulse for sustainable growth in the region.
REGIONAL STRATEGIES FOR THE LANDSCAPE

Vienna and Bratislava do not only boast a shared history but are also linked by the Danube, the Danube Floodplains National Park and the vast cultivated Marchfeld plain. The wetlands of the Danube are the last big, largely untouched riparian floodplains in Central Europe.

In economic location development, any strategy striving for future sustainability will assign an essential role to the safeguarding and further evolution of landscapes, which hence become the basis for the sustainable improvement of quality of life.

The landscape management strategy for the Aspern Airfield project involves the surrounding green expanses into planning considerations and shapes, strengthens and extends them right into the built-up zones.

TRAFFIC STRATEGIES FOR THE NORTH-EAST OF VIENNA

The urban development push for the former airfield is closely connected to the planned upgrading of the road and rail links in the north-eastern part of Vienna. The extension of the U2 Underground line, the stepping-up of the Marchegg branch (an eastbound regional train line) as well as the construction of the north-eastern bypass road (S1) and the extension of the A23 motorway will significantly improve the accessibility of and links to this region. These rail and road projects were defined in the Transport Master Plan Vienna 2003 as short- to medium-term ventures. In 2003, the strategic environmental assessment SUPerNOW once more provided clear evidence of the importance of these traffic and transport projects for north-eastern Vienna as well as for the entire Vienna-Bratislava region. The current time schedule for the four projects envisages respective completion dates between 2012 and 2015.

Journey times from Aspern Airfield train station

<table>
<thead>
<tr>
<th>Lines</th>
<th>from Aspern Airfield train station to</th>
<th>journey times</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2</td>
<td>Praterstern</td>
<td>18 minutes</td>
</tr>
<tr>
<td></td>
<td>Schottentor</td>
<td>25 minutes</td>
</tr>
<tr>
<td></td>
<td>Karlsplatz</td>
<td>30 minutes</td>
</tr>
<tr>
<td></td>
<td>St. Stephen’s Square (U2/U1)</td>
<td>27 minutes</td>
</tr>
<tr>
<td>S80</td>
<td>Vienna Main Station</td>
<td>23 minutes</td>
</tr>
<tr>
<td></td>
<td>Vienna-Meidling station</td>
<td>29 minutes</td>
</tr>
<tr>
<td>Ostbahn regional train line</td>
<td>Vienna Main Station</td>
<td>17 minutes</td>
</tr>
<tr>
<td></td>
<td>Bratislava Main Station</td>
<td>34 minutes</td>
</tr>
<tr>
<td>Intercity</td>
<td>Bratislava Main Station</td>
<td>28 minutes</td>
</tr>
</tbody>
</table>

...The former airfield is the core zone of one of the 13 target areas identified in the Vienna Urban Development Plan STEP 05 and will evolve along the Vienna-Bratislava axis into an international point of attraction and hub for economy, science and research in the cross-border CENTROPE region ...
THE NEW CITY WILL ALSO PLEASE ABUTTERS

The surroundings of the former airfield are characterised by wide landscapes and open spaces, but also by a near lack of the necessary infrastructure. The population living on-site will obviously be affected by the urbanistic development of the area to a very high degree. Involving these citizens in the upcoming projects, if possible even before the start of the actual planning work, was therefore a special concern for planners and political decision-makers alike.

Collecting input together with the citizens. In March 2004, the households in the area surrounding the former airfield were mailed information folders containing a questionnaire. The folders served the twofold purpose of providing comprehensive information on the one hand and learning about the worries and concerns of abutters, discussing these and integrating thus articulated needs into the plans on the other hand.

... For the 22nd municipal district Donaustadt, the development of the former airfield constitutes the highpoint so far of a process that started with the Donaucity project and since has entailed steady growth and permanent evolution of this district ...

Norbert Scheed, head of the Municipal District Office for the 22nd District
Event at the secondary school Heustadelgasse - “local experts”. In April 2004, the findings were presented and discussed at a public event. Upgrading public transport, prioritising pedestrians and cyclists, avoiding short cuts through the surrounding communities - these were the key topics addressed at the event. Suggestions were collated, discussed and defined as frame conditions for the planning process.

Moreover, three “local experts” were chosen in the context of the school event. These persons live near the former airfield; their knowledge of and close ties to the area enabled them to provide additional input for the planning process to enhance practical everyday use of the future city quarter. They monitored further planning steps, participated in the drafting of the tender documents for the planning team selection procedure and also sat on the evaluation commission as voting members. After conclusion of the procedure, they were involved in actual master plan development and thus directly influenced the ongoing discussions.

Workshop-style exhibition - citizens have a say. After the first urbanistic draft for the master plan had been submitted in May 2006, it was presented together with the transport and traffic projects for the area and discussed with the project team, master plan developers and traffic experts. Interest in the projects showcased was great; moreover, local inhabitants’ ideas and proposals could likewise be articulated and suggested on-site. In June 2006, an additional citizens’ meeting on developments for Aspern Airfield was organised, which in due course led to several workshops to fine-tune further action.

GENDER MAINSTREAMING

By providing precise evaluation and optimisation, the Aspern Airfield master plan created a basis for the emergence of uses, buildings and public spaces whose barrier-free design, multifunctionality and high degree of differentiation meet the specific needs and requirements of different population groups. Of course, this process does not stop with the adoption of the master plan but will be continued throughout all implementation phases.

... This is the opportunity of the new millennium for our city to generate not only political capital, but also to show understanding for citizens by providing them with sustainable quality of life. A committed change in paradigms favouring public transport over motorised private car traffic is urgently called for.

Our key contribution to the master plan was to make sure that the protection of the current and future inhabitants of the area will be given heightened attention. We expect that this example of project cooperation will be implemented and thus remain an inspiration for generations to come...

Barbara Boll, Karl Haas and Wolfgang Pollak – “Local experts”, the citizens involved in master plan development
ROLE AND FUNCTION OF THE MASTER PLAN

Stable quality for flexible development. The development of the former airfield as laid down in the master plan will extend over several decades. Obviously, such a protracted period of time may entail changes in economic and social frame conditions that are impossible to predict today; in their turn, these turnabouts may lead to fundamental changes in the objectives of development policy. For this reason, the urbanistic concept must be able to respond to such changes without losing its essential qualities.

The master plan offers proof positive of the fact that a multi-functional urban structure combining different architectures and uses with high-quality public green and open spaces can be created on this site. Qualities and potentials of key zones endowing the new city quarter with its unique identity are visualised and defined. The traffic and transport system as outlined connects the city quarter smoothly to the high-level networks, above all of public transport. All road and transport users and all transport modes are to be provided with a clearly structured and attractive network of communication lines intersecting the project area and its environs.

The master plan is only the beginning. It should be understood as a starting-point for planning that can and will be further detailed, complemented and evolved in the future, thereby serving as a basis...
and orientation for land use and development plans, fine-tuning with other plans and projects as well as quality agreements, but also for the marketing and evaluation of the location and its special qualities.

SELECTION OF THE PLANNING TEAM

Starting from the basic principles of the airfield development programme, a two-tier procedure was employed to select a team for drafting the master plan.

In the first stage of the tender, bidding syndicates from across the entire EU were invited to submit their relevant experience and project track record in order to qualify for participation in the awarding procedure.

In the second stage, ten selected bidding syndicates were invited to prepare solution proposals for the urbanistic development of the former airfield and to submit these together with bids for the drafting of the master plan.

An international evaluation commission composed of experts, land owners, political decision-makers and local residents appraised the bids submitted. In the end, the contract was awarded to the Swedish studio Tovatt Architects & Planners in co-operation with the German project developer N+ Objektmanagement.

OPINION OF THE EVALUATION COMMISSION:

Overall impression of urbanistic unity

Individual topography within the wider environs

Clearly structured and accessibly sized urban parameters convey a sense of scale, cohesion and congruence

Willingness to engage in a dialogue with neighbouring city quarters, far-reaching consideration of abutters’ interests, possibilities of integrating the environs

Optimum orientation of the central green space towards the Danube Floodplains National Park, internal networking with the urban microstructure

Two centres – i.e. “train station” and “central park” as the “green heart” of the project – stimulate urban life and a mix of different forms of land use

Sturdy, but flexibly usable road network

High potential of development options

...today we are striving for a city that offers more than mere functional quality. Towards this goal, public space is the central element of design, as it is the criterion that decides whether people feel at home in their city and identify with it ...

Prof. Carl Fingerhuth, chairman of the evaluation commission
CONCEPT

Overall urbanistic structure. Cities are perceived through their public spaces. Consequently, emphasis must be placed on the design and practical usability of urban space. As an urbanistic whole, a city is composed of buildings, streets, squares and parks. The plan elements – ring road, boulevards and other axes – determine the visual readability and identity of space.

The small-scale block structure allows for simple, rapid movement through urban space. Walking and cycling are made easy, pleasant and practical. Alongside the measures taken to promote non-motorised traffic, the objective is to maximise the use of public transport as an alternative to private car use. Every new city quarter of comparable dimensions and in a similar location needs a sustainable traffic and transport concept to serve the area and its environs efficiently.

Interactions with the environs. The future success of this development area will be highly dependent on its interactions with the surrounding spaces: open landscapes, cultivated areas, the communities of Aspern and Essling and recreational zones. The city emerging on the former airfield can only become part of a greater whole if it is integrated into the surroundings throughout all development phases. The radial structure supports basic connectivity via streets, paths and visual interrelationships but also via key landscape linkages.
KEY STRUCTURE-CREATING ELEMENTS
OF THE OVERALL CONCEPT

Northern quarter, station and shopping street. The train, Underground, tram and bus hub at the northern edge of the planning area provides for an attractive range of public transport options and thus interlinks all big transport projects in the north-eastern part of the region. This hub function is a key element of the urbanistic design that will improve local mobility far beyond the former airfield per se. A spacious forecourt lined by large-scale buildings unfolds in front of the southern station exit. As a counterweight to the “green heart” and linked to it by a vibrant shopping street, the station square is conceived as a dynamic focus for the entire area.

The green heart and its extensions to the east and west. The central park with its large lake is one of the most important design elements. Streets, footpaths, cycling tracks and the long and narrow parks are all oriented towards this vital public point. Varied urban uses and significant buildings along the northern and north-eastern lakeshore provide an attractive endpoint for the shopping street leading up to the station.

Ring road. The ring road is another key element of the spatial structure embodied in the plan. It links all main access roads to the area and emphasises the radial network of secondary streets and greened, interconnected footpaths. The ring road creates a circular corridor running between the centre dominated by the park and the project’s periphery. In this way, large sections of the development zone become visible from the ring road. Its vicinity to all important functions will make it a prime distribution and supply artery in the “metabolism” of urban life in the new city quarter.

Industrial zones. The eastern sections of the planning area were earmarked for commercial and industrial use. The detailed shape the projects will take is strongly dependent on the concrete requirements of the future tenant companies. The master plan thus only defines basic principles and leaves sufficient leeway for actual uses and architectural developments.

Fundamentally, the industrial zones are to be characterised by low, large-scale structures. In view of the location of these buildings along the ring road and at key access points to the city quarter, however, various design principles must be observed in several spots to safeguard the desired high quality of public space.

Science and education campus. At the southern exit from the Underground terminal, space was earmarked for a science, research and education campus. Since the detailed requirements of its future users are as yet unknown, the master plan contains only general indications regarding the volumes, block structures and public spaces of this section.
OUTSTANDING GREEN AND OPEN SPACE QUALITY

Green spaces are a crucial element and identifier of Aspern Airfield. Since the new city quarter is to assume an urban character and at the same time offer outstanding quality of green and open spaces, it was imperative to find the right balance between largely natural landscapes, urban parks, roads and squares. The intention was to create a clearcut hierarchy and distinctiveness of private, semi-public and public green and open spaces in order to provide an overarching orientation system and ensure a great variety of open space uses as planned while avoiding conflicts between different user groups.

GREEN AND OPEN SPACE ELEMENTS

Open spaces shared with existing communities. The two big green corridors west and east of the former airfield are key elements of the superordinate green space concept of the City of Vienna ("Green Belt Vienna").

Given the location at the interface between Marchfeld plain and Danube banks, it is imperative to link the Danube Floodplains National Park and the land around the Lobau wetlands to the “green backbone” north of the former airfield.

These large-scale, publicly accessible green zones serve a special connecting function and offer room for recreation and leisure to the local population of today and tomorrow. For pedestrians and cyclists, the routes crossing the green corridors will blend directly into the axes intersecting the former airfield. Additional corridors are available for public transport.

Central park. The central park with its large body of water is of particular importance for the green network of Aspern Airfield. Streets, footpaths, cycling tracks and the long and narrow parks are all oriented towards this vital public point.
The north-western and north-eastern lakeside zones with their specifically urban character relate closely to the adjoining, more condensed structures. Ample lakeside promenades with kiosks and open-air cafés as well as pubs and restaurants invite passers-by to take a leisurely stroll or beckon for a pleasurable stay.

To the south, the central lake is bordered by a flat shore section with spacious lawns. Zones with denser plant growth directly by the water’s edge facilitate self-purification of the water body and offer an animal habitat and retreat that is complemented by several small islands set in the lake. In some spots, the sun-bathing lawns directly touch the water’s edge.

The lake is groundwater-fed. To create a harmonious transition from the water body to the surrounding parks and built-up areas, the terrain level around the lake will be lowered in its entirety.

Green network of Aspern Airfield. A dense network of green and open spaces structures and permeates the new city quarter. In addition to the primary west-east link and the central park embedded therein, the long, narrow parks and green corridors dotting the streetscape – but also small neighbourhood parks at key nodal points – constitute important elements of the urban structure.

Spaces for movement and encounter. Aspern Airfield offers a wide range of variously dimensioned green and open spaces to motivate all residents as well as neighbours from the surrounding estates and communities to make use of an ample range of leisure options in public space.

The many squares and green corridors offer myriad possibilities for play and exercise. Trendy sports can be practised in prominent locations along the Underground lines, one example being a big inline skating rink with streetball courts near the Underground station by the lake.
MODAL SPLIT

The traffic system is based on the hook-up of the city quarter to the public transport network (Underground, “Ostbahn” regional train line, dense bus and tram network) - which will be outstanding, especially in the final construction phase -, on direct links to the surrounding communities for pedestrian and cycling traffic and on efficient connection to the high-level road network to the north.

UNDERGROUND LINE U2

The Underground enters the former airfield from the north-western direction. The Airfield North (“Flugfeld Nord”) station is an important hub between the Underground and the Austrian Federal Railways’ regional train line “Ostbahn” on the one hand and the required tram and bus lines on the other hand and moreover serves as a vital interchange point from private car to public transport.

To prevent the Underground line from becoming a physical barrier intersecting the area, it will run on an elevated track after passing the station. The second station, Airfield South (“Flugfeld Süd”), is situated on the lakeside, adjacent to the planned science campus, and offers access to the centre of the new quarter. From there, Vienna’s city centre can be reached by public transport in just over 20 minutes.

NON-MOTORISED TRAFFIC

The Aspern Airfield master plan prioritises pedestrian and cycling traffic. Lines of trees, greened strips and lively ground-floor zones are to ensure a high standard of public space design. Covered passageways, too, are planned. In addition to the road network, the green space structure creates a dense network of car-free, greened routes that beckon for relaxation and leisure activities in the im-
mediate vicinity of the residential units. The green corridors to the west and east will link the former airfield with its environs, the Danube Floodplains National Park and the Marchfeld plain by means of numerous footpaths and cycling tracks. As the highest local terrain elevations, green crossings provide attractive vantage points.

ROAD SYSTEM

The A23 motorway passes north of Aspern Airfield; its precise routing will be determined in consultation with the road construction company ASFINAG. Two A23 junctions function as the main links connecting the private motorised traffic of Aspern Airfield to the road network. Moreover, the area is linked to the district road network by means of local streets.

The ring road is a key structural element of the Aspern Airfield master plan. It is the basis for the distribution and internal circulation of all traffic modes and connects all road types within the city quarter.

The two streets leading from the ring road to the lake are designed as traffic-calmed accessways.

Car parks. The parking space management concept outlined in the master plan provides for shifting most private-car parking slots to underground car parks. However, the high groundwater level complicates the construction of such car parks. For this reason, it is proposed to build garages lowered by only approx. 2 m (as compared to terrain level) inside the residential blocks, with greened interior courtyards covering the car park roofs. This split-level solution allows for spacious street-front ground-floor zones.

A park-and-ride facility with a capacity of up to 1,500 slots will accommodate the function of the future Flugfeld Nord station as an interchange hub and contribute essentially towards minimising motorised vehicle traffic across the Danube.
The development of a city quarter that is to assume a central function due to its rich range of services and shopping facilities calls for urban volumes and corresponding scales. In spots where urban variety is the goal, the function and design of buildings must interlock closely with public space. Objectives such as vibrancy, short distances and a balanced social tissue presuppose a high degree of mixed uses embedded in a sturdy, flexible spatial structure.

Housing. The focus of residential buildings primarily extends to the south and west of the shopping street and presents close links to the central park and western green corridor. Shops meeting the demand of these residential zones are to be located in specially designated ground-floor premises. One particular concern of the master plan is to allow for a share of residential units in as many zones of the city quarter as possible, as this triggers increased vitality throughout the entire day.

Schools and kindergartens - social infrastructure. The master plan only defines the purpose and location of those social infrastruc-
tecture facilities that are to be built on specially dedicated lots. These locations e.g. include a combined elementary and co-operative middle school with attached six-group daycare nursery (D18) as well as another elementary school (F9), another co-operative middle school (E8) and a general secondary school (D14). Moreover, two more locations were chosen for six-group daycare nurseries (F15, H10). All thus designated infrastructure locations are situated in the immediate vicinity of public transport stops and linked to green spaces. Another 16 daycare nursery groups integrated into buildings serving other purposes complement the basic range of schools and kindergartens.

Due to its openness and differentiated setup, the fundamental urbanistic structure is well suited for providing attractive spaces and premises for the remaining social infrastructure facilities an urban city quarter must offer its inhabitants. Areas designed for flexible uses can host larger cultural and leisure installations such as an indoor swimming pool or a multifunctional event hall. Moderately condensed residential and mixed-use areas close to spacious green zones are particularly well suited for facilities providing care for the elderly. The space set aside for the science campus also includes educational institutions for a broad public.

Offices and services, commerce and trade. Since offices principally need to be housed in prime locations, the master plan provides for the construction of office buildings mainly on lots in the immediate vicinity of the Underground stations.

Trade, personal services, restaurants and cafes, entertainment venues, but also social and cultural functions should be architecturally integrated and open up towards public space as far as possible. Passageways, arcades, awnings and canopies enrich the street-scape.

The biggest concentration of commercial uses is to evolve along the shopping street between train station and lake. Industrial uses requiring special buildings, halls and large surfaces will be mainly located along the eastern periphery of the former airfield, close to the existing feeder track of the General Motors plant.

Cultural facilities. The master plan principally refrains from singling out lots for cultural facilities, since such locations and structures must fulfil a great variety of requirements: the spectrum is to range from high-level art galleries and cultural facilities of citywide importance to workshops and rehearsal studios.

Only the sites for a place of religious worship (H4) and a smaller building for cultural uses on the shopping street (G6) were already determined in the master plan.

Science campus - research and development. By earmarking a lot for research and development, the project creates another location where economy and research can co-operate actively in the Austrian capital. Essential qualities of the science campus thus include the possibility of networking with high-tech enterprises, a high degree of spatial flexibility, excellent public transport connections, urban infrastructure and an attractive, green environment.
The master plan does not prescribe precise building heights but rather lays down basic principles to define the interaction between higher and lower volumes. Deliberate height differentiation is to create accents, emphasise specific spatial situations and produce urbanistic rhythms and dynamic spaces. Varied building heights are moreover to yield private open spaces on the blocks’ rooftops.

High-rises as landmarks. A striking “gateway to Vienna” created by different building heights is developed around the station to the north of the project area, resulting in a landmark that can be perceived and recognised even from far away. In the zone surrounding the southern Underground station, high-rises housing offices and public facilities will likewise be built in the final project stage to signal the particular character of this location.
Along the shopping street, the northern lakeshore and some sections of the ring road, buildings with six to nine, in some places even twelve storeys underline the boulevard atmosphere of streetscapes and squares. The corners of the blocks, too, are often emphasised by higher structures; crossings and changes in direction are given particular attention.

The heights of residential buildings vary from two to seven storeys. To optimise light incidence and provide for terraces and roof gardens, the building heights will be differentiated in the context of more detailed plans. As a rule, the industrial areas will not feature building heights exceeding two storeys. However, the fronts facing the ring road – which will contain a higher share of office premises – will be designed as multi-storey structures.

DENSITIES

The aimed-for urban structure essentially demands high building density. The objective of attracting large numbers of persons and high-frequency uses to the immediate environs of the Underground stations likewise results in obvious key requirements to be met. Yet apart from these functional considerations, building densities are to be deliberately staggered to emphasise spaces and spatial sequences, structure the urban tissue and endow it with clear readability. In addition to building density, social density and social variety are further objectives. Towards this purpose, the master plan provides for variation and contrast. On an average, floorspace density (gross floorspace in relation to net development area) is approx. 2.2 for the entire former airfield.

Since the creation of condensed urban structures with central service and shopping facilities calls for correspondingly developed demand, zones of particular density will only be built in later construction stages. However, dimensions of relevance for infrastructure and supply as well as urban structures are to be provided for already in the first phase.
The master plan provides for four development stages from Phase 0 to Phase 3. This numbering reflects the timescale for the prerequisites required to implement the different construction phases: in order to develop Phase 0, the established land classification (“industrial area”) is sufficient, but a new land use and development plan must be drawn up for all subsequent stages; as a result, these are numbered from 1 to 3. In defining these phases, the main objective lay in developing sub-sections that with respect to their volumes and functions form logically delimited units.

Quality assurance. In the interests of the citizenry, it must be safeguarded that the City of Vienna and the project developers will agree on an implementation process for this large-scale urbanistic venture that guarantees gradual, phased growth on the basis of specific provisions regulating both quality and quantity. Phased growth also allows for quality assurance, as the growth process will be monitored by an expert panel. Special zones such as the central green space, station square, shopping street and education campus will be examined in depth before implementation by recurring to quality assurance processes such as competitions. The master plan offers a stable backbone for this purpose and encourages both flexibility within its boundaries and fine-tuned responses to the real estate market and its frame conditions.

Phase 0. This phase makes sure that a variety of location-compatible uses will be speedily installed.

In keeping with the intended motto “green comes first”, the initial measures concern green space design: this means that the Phase 1 construction lots are provided with new plants and thus endowed with visual appeal and experience value. A tree nursery will
be created as a sort of symbolic “project clock”: as the project progresses, it will gradually disappear in favour of the newly established green spaces and avenues lining the development area. In this phase, industrial and research facility zones are planned for the south-eastern section of the former airfield.

Phase 1. The location of this construction lot in the south-western part of the development area was chosen because of the short distance to the future Underground station Aspernstrasse for pedestrians, cyclists and bus users. The zones around the lake and to the north require substantial shifts in terrain height and can therefore only be occupied in later phases. However, the design of the central park is already anticipated in Phase 1. The first residential buildings, shops for everyday necessaries and a school are built; the centre of the development will emerge around the park. It is planned to construct approx. 1,500 dwellings in Phase 1.

Phase 2. The large-scale development of the former airfield will begin with the service start-up of the U2 Underground line and the construction work for the A23 motorway. The areas around the two hook-ups to the motorway provide development nuclei for commercial and industrial uses to the east and the basis for the emergence of an office district to the west. The ring road and the diagonal crossing the central park lay the foundation for further developments. The east-west axis is traced around the central park at the outset of this phase. This will permit capacity use of the U2 terminal as well as the development of the urban front facing the lake. Residential structures along the western lakeshore will follow. The education campus, too, will be constructed in this phase.

Phase 3. Since Phase 3 is the final and latest stage to be implemented, it allows for maximum flexibility in planning. Developments can be adjusted or reinforced. The objective lies in optimising the myriad mixed uses deployed in the former airfield and its individual zones. The construction programme will be concluded with a complex mostly composed of residential buildings and another school to the west and with an industrial-commercial zone to the east.

Planned gross floorspace, broken down by types of use and phases*

<table>
<thead>
<tr>
<th>Phase</th>
<th>Housing (gross floorspace)</th>
<th>Offices, shops, service facilities, companies (gross floorspace)</th>
<th>Industrial areas - not suitable for integration (gross floorspace)</th>
<th>Social infrastructure (gross floorspace)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>31,330 sq m</td>
<td>9,070 sq m</td>
</tr>
<tr>
<td>1</td>
<td>231,820 sq m</td>
<td>14,560 sq m</td>
<td>11,950 sq m</td>
<td>60,580 sq m</td>
</tr>
<tr>
<td>2</td>
<td>363,520 sq m</td>
<td>345,980 sq m</td>
<td>60,520 sq m</td>
<td>3,400 sq m</td>
</tr>
<tr>
<td>3</td>
<td>239,770 sq m</td>
<td>471,770 sq m</td>
<td>43,550 sq m</td>
<td>21,130 sq m</td>
</tr>
<tr>
<td>Sum total</td>
<td>835,110 sq m</td>
<td>832,310 sq m</td>
<td>147,350 sq m</td>
<td>94,180 sq m</td>
</tr>
</tbody>
</table>

Quantity scale. In the final stage, a total of approx. 20,000 persons will live in the area of the former airfield; office and service jobs are to be created for close to the same figure, while the number of workplaces in manufacturing companies will equal 6,000. *Additional floorspace for scientific and cultural facilities as required (up to 300,000 sq m)
Following the pioneer construction of industrial premises, the first residential development push will be launched in the south-western part of the planning area. Due to its vicinity to the community of Aspern, a smooth hook-up to the existing infrastructure networks is possible. Moreover, conflicts with later, large-scale ventures (terrain height modifications, construction of Underground line and motorway, etc.) can most likely be avoided. The area will be linked to the existing settlements and the U2 station Aspernstrasse (to be operative by 2010) by means of the bus route “An den alten Schanzen” and the upgraded path and cycling track network. The first road to cross the former airfield will connect Johann-Kutschera-Gasse with Gross-Enzersdorfer Strasse via a new access road east of the General Motors plant.

Due to its pioneering role, the development of this residential area must meet ambitious requirements. High-quality dwellings, an attractive environment and top-level shopping and service amenities must emerge here to signal the outstanding overall project standard.

A local centre for the environs. In addition to the provision of basic facilities such as schools and kindergartens, a first centre function must emerge here concurrently with the first tenants moving into the flats; apart from services for the local population, it should also offer options for a larger catchment area. In the initial years, the main street and main square are the first firmly defined locations and will remain the local neighbourhood hub even after the big regional centre in the northern part of the development area has been created (shopping street and station area). A varied range of shops,
services, restaurants, cafés and social facilities should generate a vibrant centre for this quarter within a very short timeframe. Far from merely providing services to meet local demand, the amenities are to attract a wide range of persons living outside this quarter, as these persons currently do not dispose of such facilities in their vicinity.

A particularly interesting opportunity results from the fact that not all construction lots need to be used and built up from the beginning in the form they will finally take. This leaves room for temporary and experimental uses, perhaps even involving parts of the former runway.

Project input. A list of suitable ideas for the Phase 1 local centre is easy to compile merely by imaginatively scanning the available possibilities and can be implemented and expanded at an early date by interested developers, operators and entrepreneurial spirits in co-operation with the project development company: a “city house” with information centre, a development, construction and marketing office run by the airfield development company, an area management office, space rented by field offices of authorities, a library, premises for classes, courses or private functions; shops and service facilities, a market square or market hall, kiosks, restaurants and cafés in pavilions housed in rented ground-floor premises lining the main square, main street and lake; “Hangar 1” for cultural or leisure events and movie shows; schools with afternoon and recreational programmes, kindergartens, a student hostel; jogging tracks, meadows for playing and lounging, sports grounds, a sauna and wellness “village”, artists’ studios, workshops, an open-air stage/arena, lakeside promenades, ...
TOPOGRAPHY AND ENVIRONMENT

TOPOGRAPHY

The central green space is to reflect the visual impact of the Lobau wetlands. A lake of an average depth of approx. 5 m will be situated in the central park. The lake and most watercourses will be fed by groundwater.

Green crossings will be established to overcome the barriers created by traffic infrastructure in the northern part of the development area. The section between the A23 junctions will be elevated south of the train tracks. This terrain formation is comparable to the terraces typical of the Danube zone. The excavated material derived from creating the central park and the terrain lowering planned for the surrounding zone will be used for backfilling the green crossings and traffic surfaces.

ECOLOGY

Water balance of Aspern Airfield. Unless needed for flushing sewers, the precipitation water generated on the surface occupied by the former airfield is made to percolate into the ground on-site. These leaching areas can be designed in many different ways, ranging from gravel zones and drain channels to spacious biotopes that may also run dry at certain periods.

Flora and fauna, habitats – compensation measures. At the moment, the project area is mostly farmland and presents an animal and plant stock typical of cultivated fields and meadows. Yet the area is all but useless for the local population; due to the lack of crossing paths, it acts as a barrier between settlements. Before initiating the master plan, the core of the planning area was in fact destined for industrial or commercial uses, in keeping with the established land classification.

With its networked green structures, the new city quarter not only offers optimum ac-
cess to its green spaces but also proposes new physical links. The manifold structuring of the green zones gives rise to new habitats for plants and animals.

By creating the central lake and connecting it to an existing pond ("Himmelteich"), the objective of connecting separate bodies of water formulated in Vienna's species and biotope protection programme "Network Nature" is met. These large bodies of water as well as other, smaller water bodies and wet biotopes also provide new habitats for animals and plants.

CLIMATE AND ENVIRONMENTAL PROTECTION

The urbanistic design and the principles of the master plan – short distances, mixed uses, construction types with low land consumption – contribute significantly towards protecting the environment.

Strategy 1:
Avoiding motorised traffic. The traffic and transport concept and the arrangement of the construction lots are designed to keep trips by car to a minimum. Footpaths and cycling tracks are attractive and safe. Highly efficient public transport stops are easy to reach and connect the former airfield to important destinations across the entire municipal territory and region. The dimensions and density of the new city quarter allow for excellent supply with goods and services on-site. A wide range of natural and leisure attractions is likewise available.

Strategy 2:
Energy-saving city quarter layout. To cut down on the energy consumption of buildings, a number of optimisation measures were integrated into the planning documents. These inter alia include ample green spaces with their positive effects on the microclimate, dense and compact built structures to avoid energy losses, maximised energy efficiency due to passive house standards, etc.

Strategy 3:
Use of geothermal energy. Underground hot-water reservoirs are sited at a depth of approx. 3,500 m below the former airfield. In view of the planned extensive construction activities for the project area as well as new technologies and scientific findings, a feasibility study was carried out, indicating the economic viability of constructing a geothermal power plant on or close to the planning site. If this venture is indeed successfully implemented, a large part of the new city quarter's energy requirements for room and water heating (in winter) and water heating and cooling (in summer) could be met by geothermal power. Even hotter reservoirs of water at a depth of approx. 5,000 m promise excellent power generation potential. In addition to generating energy, the geothermal power project would also permit the establishment of a relevant research and enterprise focus.

Strategy 4:
Material management. Three large-scale terrain modifications entailing significant volumes of excavated material are required on the site of the former airfield: the existing concrete runway must be dismantled; the negative effects of the big traffic structures at the northern periphery of the site are to be mitigated by backfills and crossings; a groundwater lake with flat shore sections is to emerge at the centre of the new city quarter. Moreover, the construction of roads and buildings likewise entails substantial haulage volumes. The soil masses thus obtained are to be managed as efficiently as possible to minimise energy input and the emission of noise and dust.